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Perturbation theory for the kink of the sine-Gordon equation
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National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University, Nanjing 210093,

People’s Republic of China
~Received 20 January 2000!

A singular perturbation theory is developed to investigate the kink propagating in systems governed by the
sine-Gordon equation with perturbations. The outstanding characteristic of the present theory lies in that the
dynamic equation and the dispersive wave as well as the ‘‘translation mode’’ are consistently determined in a
natural manner, involving no sophisticated derivations pertaining to the inverse scattering transform. A distinct
and strict linearization for the subject is introduced. Some notable cases are reformulated by the theory.

PACS number~s!: 41.20.Jb, 52.35.Mw
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The study of solitons under the influence of perturbatio
is a subject of considerable significance for both applicat
and theoretical researches. From the point of view of
modern perturbation theory, the regular expansion is alw
invalid even for linear systems suffering from weakly no
linear perturbations@1#, which certainly hold true for solitons
affected by perturbations. Among a number of technique
handle this kind of problems, the most popular and effect
one utilized to determine an asymptotic expansion tha
uniformly valid is the technique of multiple scales@1#. It was
actually employed in the development of perturbation th
ries for the KDV equation@2# and the nonlinear Schro¨dinger
equation@3# in an attempt to prevent the occurrence of se
lar terms. Now, it is universally acknowledged that, at t
presence of perturbations, solitons not only modify th
shape by a correction of a linear dispersive wave but a
undergo a slow change of their parameters@4#. These are two
basic features of the soliton’s perturbation problems. We
alized that a perturbation theory for a soliton should dep
these in a natural manner, which will provide a more dir
insight into fundamental aspects of such problems. The
called ‘‘two timing’’ technique, or its archetype of the mor
general method of multiple scales, should be a canonical
to characterize these problems in the framework of dir
perturbation approaches.

In the study of nonlinear wave phenomena the si
Gordon equation frequently emerges from a vast range
physical applications@4,5#. As an important example, th
model of long Josephson transmission line, which rece
received renewed interest due to the appearance of h
temperature superconductors@6#, provides us an applicabl
problem to investigate the kink’s dynamics under the act
of external force and some dissipations. This topic recei
much attention in previous studies as well@7,8#. It is well
known that the sine-Gordon equation is an integrable
and possesses a number of remarkable mathematical pr
ties. The most celebrated inverse scattering transform ca
used to formulate the kink solution and its perturbati
theory@9#. But this elaborate mathematical feat seems a li
abstruse for most physical researchers, and it is difficul
derive an explicit expression for the dispersive wave from
associated linear integral equation. A two-stage scheme
thus proposed by McLaughlin and Scott@7#. They first com-
puted slow modulations of velocity and initial position of th
PRE 621063-651X/2000/62~6!/8842~4!/$15.00
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kink, and then calculated the first-order correction throug
constructed radiative Green’s function. They stated that th
method is partially based upon the inverse scattering tra
form, which alludes to the sophisticated construction of
representation. Fogelet al. @10# put forward a direct pertur-
bation theory for the subject. They paid attention mainly
the kink with low velocity in comparison with its limiting
value of unity, based on their expectation that perturbati
have little influence on the kink with large velocity. Th
theory is founded on the basis of eigenfunctions of a Sch¨-
dinger operator being of a simple form. Some of their resu
@10# were discussed by others@11,12#. Moreover, in this
scheme, Flesch and Trullinger@13# investigated the static
kink. Analytical forms for the Green’s function are derive
and expressed in terms of ‘‘modified’’ Lommei function
In addition to above formal theories, there is still a mo
popular and simpler approximate scheme designated to
termine moving equations for the kink@12,14# by making
use of modified conservation laws. An apparent disadvant
of this scheme is generally remarked to be that it is use
for the understanding of linear elementary excitations in
system.

From the above introduction, a plain and general theor
needed for this important subject. In the present pape
direct perturbation approach to investigate the motion
kink in the systems described by the sine-Gordon equa
with perturbations will be developed. In this scheme,
employ the derivative expansion method to linearize the p
turbed sine-Gordon equation in the coordinate frame
tached to the moving kink. In order to eliminate potent
secular terms in the solution, parameters of the kink are
assumed to be dependent on slow time scales. Although
distinct process of linearization for the perturbed sin
Gordon equation involves somewhat complicated calcu
tions, its idea is plain and strict. After the linearization, w
take the Laplace transform to reduce the linearized equa
to an ordinary differential equation that is, by virtue of
further function transform, converted into a form appropria
for solution by the method of eigenexpansion. Naturally,
eigenvalue problem that is not self-adjoint is extracted fr
our derivation, and its eigenfunctions are used to constru
complete basis underlying our solution. The solution tu
out to contain two types of secular terms that are direc
proportional tot and t2, respectively. Imposition of secula
conditions results in two equations governing the slow va
tion of the parameters in time. The final solution for firs
8842 ©2000 The American Physical Society
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order correction consists of two branches of dispersive w
traveling in opposite directions and a localized state usu
referred to as the ‘‘translation mode.’’

We start with the perturbed sine-Gordon in the form

Utt2Uxx1sinU5«P@U#, ~1!

where« is a small positive parameter, andP@U# is a func-
tion of U and its derivatives with respect to time and spa
If perturbations are absent, i.e., by setting« to zero, Eq.~1!
admits a kink solution given by

U~ t,x!54 arctanem(x2vt2x8), ~2!

wherev andx8 signify the kink’s velocity and initial posi-
tion, respectively, andm51/A12v2. Now, we consider Eq.
~1! with an initial stateU(0,x)54 arctanem(x2x8). In this
case, the initial profile cannot travel as that described by
~2!, but it is reasonable to suppose that it is a slowly vary
kink shape plus a small correction. Thus, we first introduc
series of slow time scalestn5«nt and then write the solution
of Eq. ~1! as

U~ t,z,$tn%!5U (0)~z!1«u~ t,z,$tn%!1higher-order terms,
~3!

where U (0)(z)54 arctanez figures a moving kink,z5m@x
2«21x($tn%)2x8($tn%)# is the coordinate variable in th
frame co-moving with the kink and the higher-order terms
« are neglected in our subsequent calculations. Since t
time scales introduced above will be treated as indepen
variables, the derivative with respect to time should be
placed by] t5] t1«] t1

1•••, which is the so-called deriva

tive expansions@1#. If we further selectt, z, t1 as indepen-
dent variables and just consider up to the first order of«, the
second-order temporal and spatial derivatives in Eq.~1! must
be replaced by

]2

]t2
5

]2

]t2
22ma

]2

]t]z
1m2a2

]2

]z2
2«2amt1S ]

]z
1z

]2

]z2D
1«2m2ax t1

8
]2

]z2
2«mat1

]

]z
1«

2mt1

m
z

]2

]t]z

2«2mx t1
8

]2

]t]z
2«2ma

]2

]t1]z
1«2

]2

]t]t1
~4!

and

]2

]x2
5m2

]2

]z2
, ~5!

wherea5x t1
is defined for later convenience. Substitutio

of Eqs. ~3!–~5! into Eq. ~1! yields a sequence of equation
for each power of«. The zeroth- and first-order ones read

m2~a221!Uzz
(0)1sinU (0)50, ~6!

utt22mautz1m2~a221!uzz1~cosU (0)!u5M ~z!. ~7!
e
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We would like to indicate that we are now in the fram
comoving with the kink. Obviously, the zeroth-order Eq.~6!
requires thatm51/A(12a2). In consequence, the first-orde
Eq. ~7! becomes

utt22mautz2@uzz1~2 sech2 z21!u#5M ~z! ~8!

with

M ~z!5P~z!12mat1
c0~z!14m3a2at1

c̄0~z!

14m2ax t1
8 c̄1~z!, ~9!

where c0(z)5sechz, c̄0(z)5sechz(12z tanhz), and
c̄1(z)5sechz tanhz. Thus the distinct linearization for the
sine-Gordon equation has been completed. Apart from
neglect of high-order terms of«, no approximation is in-
volved. The reason we carry out such a somewhat com
cated process is to preliminary provide extra freedoms
remove secular terms that will appear in the solution of E
~8!. Now, we proceed with the solution by use of Lapla
transform to Eq.~8!, which gives

s2ũ22masũz2@ ũzz1~2 sech2 z21!ũ#5s21M ~z!.
~10!

Equation~10! is hard to handle directly; hence we devise tw
function transforms to reduce it into forms appropriate
solution by the method of eigenfunction decomposition.
letting ũ5ve2m(a11)sz and ũ5v8e2m(a21)sz, respectively,
and inserting them into Eq.~10!, we get

2msvz2L̂v5s21M ~z!em(a11)sz, ~11!

2msvz81L̂v852s21M ~z!em(a21)sz, ~12!

where L̂ is an ordinary differential operator defined byL̂
5d2/dz21(2 sech2 z21). Equations~11! and~12! are inho-
mogeneous ordinary differential equations in nature.
usual, we must first consider its homogeneous counterp
which will result in the following eigenvalue problem:

L̂c5lcz . ~13!

The above eigenvalue problem is apparently not s
adjoint, its eigenstates consist of a continuous spect
c(z,k) with the eigenvaluel5 i (k211)/k and a discrete
statec0(z) with the eigenvaluel50. Under the definition of
inner product in Hilbert space, these states are orthogo
but not complete; an extra orthogonal discrete statec1(z)
5z sechz must be appended to the eigenstates to comp
the closure relation. This phenomenon comes out to
popular in the direct soliton perturbation theories@15#. We
recall that, in the previous theories, one usually derived
incomplete eigenstate from a partial differential opera
by virtue of a smart relation with the inverse scatteri
transform and then completed them, which is really cumb
some. In the present scheme, a set of complete b
$c(z,k),c0(z),c1(z)% is easily constructed from eigenstat
of Eq. ~13!. The explicit expression for the continuous spe
trum is given by
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c~z,k!5
1

A2p~k211!
~12k222ik tanhz!eikz. ~14!

The corresponding adjoint states of the above set consi

$c̄(z,k),c̄0(z),c̄1(z)%. The continuous spectrum of adjoin
states is calculated by the relationc̄(z,k)5cz(z,k)/ ik,
which reads

c̄~z,k!5
1

A2p~k211!
~12k222ik tanhz22 sech2z!eikz.

~15!

There exists a relation between the noneigenstate and its
joint, namely, L̂c1(z)522c̄1(z). These relations will be
used in the later derivation. Based on this set we can dec
posev(s,z) in Eq. ~11! as

v~s,z!5E
2`

1`

dkṽ~s,k!c~z,k!1 ṽ0~s!c0~z!1 ṽ1~s!c1~z!.

~16!

By virtue of expansion Eq.~16!, we can derivev(s,z)
from Eq. ~11! without difficulty. Recalling that ũ
5ve2m(a11)sz, and taking the inverse Laplace transform f
ũ(s,z), we get

u~ t,z!5E
2`

1`

dk
1

k211
E

2`

1`

dz8@12ei [(k211)/2mk]b1
#

3M ~z8!c* ~z8,k!c~z,k!

1
1

2mE
2`

1`

dz8b1M ~z8!c1~z8!c0~z!

2
1

4m2E2`

1`

dz8~b1!2M ~z8!c0~z8!c0~z!, ~17!

wherec* (z,k) represents the complex conjugate ofc(z,k)
andb15@ t1m(a11)(z82z)# is defined. It is apparent tha
secular terms directly proportional tot and t2 occur in the
second and third terms in the above solution. Remov
them, we must impose

E
2`

1`

M ~z8!c0~z8!dz850 ~18!

and

E
2`

1`

M ~z8!c1~z8!dz850, ~19!

which are customarily referred to as secular conditio
Hence we get the final solution
of

d-

m-

g

.

u~ t,z!5E
2`

1`

dk
1

k211
E

2`

1`

dz8@12ei [(k211)/2mk]b1
#

3M ~z8!c* ~z8,k!c~z,k!

1
1

4m2E2`

1`

M ~z8!z82c0~z8!dz8c0~z!. ~20!

The first term in the solution corresponds to the dispers
wave traveling along the positivez direction; the second term
is the ‘‘translation mode.’’ Following absolutely the sam
procedure, we can acquire another solution via Eq.~12!,

u~ t,z!5E
2`

1`

dk
1

k211
E

2`

1`

dz8@12e2 i [(k211)/2mk]b2
#

3M ~z8!c* ~z8,k!c~z,k!

1
1

4m2E2`

1`

M ~z8!z82c0~z8!dz8c0~z!, ~21!

where b25@ t1m(a21)(z82z)#. The secular conditions
and the ‘‘translation mode’’ are just the same as preced
results, which is very reasonable, but the dispersive w
travels in the opposite direction. Inserting Eq.~9! into Eqs.
~18! and ~19!, we have

at1
52

1

4m3E2`

1`

P~z!sechz dz, ~22!

x t1
8 52

1

4m2a
E

2`

1`

P~z!z sechz dz, ~23!

which govern the slow variation of the kink’s velocity an
initial position in time.

To further display the intrinsic aspect of this scheme,
give our different viewpoint of a notable example of the kin
under the action of a small constant external force co
sponding to the dc bias current in the long Josephson ju
tion and a dissipative loss resulting from tunneling of norm
electrons across the barrier, namely,P@U (0)#5g2hUt

(0) . In
the case ofP5g, since the right-hand side of Eq.~11! ap-
proaches infinity asz→1` and so does Eq.~12! as z→
2`, some modifications must be made to our theory. T
problem can be settled by dividing the solution of Eq.~10!
into two parts,

s2ũ(1)22masũz
(1)2L̂ũ(1)5s21u~2z!M ~z!, ~24!

s2ũ(2)22masũz
(2)2L̂ũ(2)5s21u~z!M ~z!, ~25!

in which u(z) is the Heaviside function. It can be easi
verified that ũ5ũ(1)1ũ(2) is our desired solution. Solving
Eq. ~24! as that for Eq.~11! and Eq.~25! as that for Eq.~12!,
incorporating these two solutions, we get
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u~ t,z!5E
2`

1`

dk
1

k211
E

2`

1`

dz8@12ei [(k211)/2mk]b1
#

3u~2z8!M ~z8!c* ~z8,k!c~z,k!

1E
2`

1`

dk
1

k211
E

2`

1`

dz8@12e2 i [(k211)/2mk]b2
#

3u~z8!M ~z8!c* ~z8,k!c~z,k!

1
1

4m2E2`

1`

M ~z8!z82c0~z8!dz8c0~z!. ~26!

In the modification, relations for variation of th
velocity and initial position remain unchanged. Thu
at1

52g(1/4m3)*2`
1`sechz dz. Recalling thatx t1

5a and

t15«t, by integration, we derive x(«,t)5@m0

2A(m0a02«at)211)]/a, where m051/A(12a0
2), a

5pg/4, anda0 is the initial velocity of the kink.
Now, let us proceed to the next perturbationP@U (0)(z)#

52hUt
(0)52mah sechz. From Eq. ~22! we have at1

52ah/m252a(12a2)h. Integrating this equation from 0
to t1 yields aA(12a)/(11a)5a0A(12a0)/(11a0)e2«ht.
Considering a small value of the initial velocity, we find th
the initial velocity exponentially decreases, viz.,a(«,t)
5a0e2«ht, and the equation of motion is given byx(«,t)
5a0(12e2«ht)/h.

We have demonstrated a theory for the study of the s
Gordon equation under perturbations. The slow variation
parameters in time and the first-order correction consistin
two branches of dispersive wave traveling in opposite dir
tions and a localized state are determined in a consis
manner. It can be seen that no advanced and sophistic
mathematical techniques are necessary for the theory.
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constructed in a normal frame in the modern perturbat
theory and can be viewed as a successful implementatio
the powerful technique and idea of the method of multip
scales in the perturbation theory of solitons. Hence we h
reason to believe that it is a more reasonable and natural
in comparison with previous theories. Here, we should n
that the theory by MacLaughlin and Scott@7# is canonical.
Although it is principally devised for the multikink problem
it is actually of practical sense for the single kink. The ba
idea of their theory is very plain, but they came up agains
partial differential operator in matrix form that is hard
manage directly and necessary for sophisticated mathem
cal tools. It is fortunate enough that the representation for
Green’s function is found to be constructed by virtue of
‘‘squared eigenfunction’’ from the inverse scattering meth
or by the use of Ba¨cklund transformations, which is really a
exhibition of remarkable properties of the sine-Gordon eq
tion. The theory by Fogelet al. @10# is in the framework of
regular expansion, and is usually mentioned as the ‘‘coll
tive coordinate method.’’ Their result, that the kink behav
as a Newtonian particle in their theory, caused some con
versy by a number of authors@11,12#. In fact, this one is
included in our theory by introducing the same approxim
tion, i.e., a is small, whereas we hold extra freedom
handle the secular term.

In conclusion, nonlinear evolution equations underlyi
solitons turn out to share a series of special properties, wh
is certainly true for its perturbed counterpart. Hereby, it
expected that some theoretical structure more intrin
should be discovered and illustrated at the perturbation le
In this sense, our theory reveals a facet of perturbation the
of solitons.
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